



Class: XII

Time Allowed: 20 minutes

Q1:

## MODEL PAPER EXAMINATION 2026

SUBJECT: MATHEMATICS  
SECTION "A"

Marks: 20

**Note:** Attempt ALL questions from this section. Each question carries ONE mark.

1. The point (3,3) is \_\_\_\_\_ the circle  $x^2 + y^2 = 64$ .
  - A. Outside
  - B. Inside
  - C. On
  - D. Cannot be determined
2. The perimeter of a rectangle is given by the function  $p(x, y) = 2(x + y)$ , where  $x$  and  $y$  are the length and breadth, respectively. What is the sum of the partial derivatives  $p(x, y)$  with respect to  $x$  and  $y$ ?
  - A.  $2x$
  - B.  $2y$
  - C.  $2(x + y)$
  - D. 4
3. What is the slope of a line perpendicular to a vertical line?
  - A. 2
  - B.  $\frac{1}{2}$
  - C.  $90^0$
  - D. Undefined
4. The length of tangent drawn to the circle  $x^2 + y^2 + 2y - 1 = 0$  from the point (5,2) is:
  - A.  $\sqrt{24}$  unit
  - B.  $\sqrt{33}$  unit
  - C.  $\sqrt{32}$  unit
  - D.  $\sqrt{31}$  unit
5. The equation of the tangent to the circle  $x^2 + y^2 = 25$  at (3,4) is
  - A.  $3x + 4y = 0$
  - B.  $4x + 3y = 25$
  - C.  $3x + 4y = 25$
  - D.  $3x + 4y = 5$
6. Let  $f(x, y)$  and  $g(x, y)$  be homogenous functions of degrees 2 and 3, respectively. What is the degree of the homogenous function  $\frac{f(x, y)}{g(x, y)}$ ?
  - A. 6
  - B. 1
  - C.  $\frac{2}{3}$
  - D. -1
7. In the bisection method, the approximate root is the \_\_\_\_\_ of the endpoints of the interval in which an actual root lies.
  - A. Arithmetic mean
  - B. Geometric mean
  - C. Sum
  - D. Product
8. If  $g(x) = 3x + 2$  and  $g(f(x)) = x$  then  $f(2) =$ 
  - A. 2
  - B. 6
  - C. 0
  - D. 8
9. The area bounded by the curve  $y = \ln ex^2$  from  $x = -1$  to  $x = 1$  is
  - A.  $\frac{2}{3}$
  - B. 1
  - C.  $\ln 2$
  - D.  $\ln 3$
10. What point on the line  $2x - 3y = 5$  is equidistant from (1,2) and (3,4)?
  - A. (-2,2)
  - B. (4,1)
  - C. (1,-1)
  - D. (4,6)
11. The center of a circle given by the equation  $x^2 + y^2 + 10 - 8y + 1 = 0$  is
  - A. (-5,8)
  - B. (-10,8)
  - C. (5,-4)
  - D. (-5,4)
12. In a plane, three or more points are said to be collinear if
  - A. They lie on a circle
  - B. They form closed loop tighter
  - C. They lie on a straight-line
  - D. They do not make any defined shapes
13. The equation  $xy = c^2$  represents a
  - A. Parabola
  - B. Ellipse
  - C. Hyperbola
  - D. Circle
14. In the trapezoidal rule, the number of sub-intervals must be a multiple of
  - A. 0
  - B. 1
  - C. 2
  - D. 3
15. If a function  $f(x)$  satisfies  $f(c) = 0$ , the point  $(c, f(c))$  is referred to as a
  - A. Maximum point
  - B. Minimum point
  - C. Stationary point
  - D. Critical point
16. The eccentricity of a rectangular hyperbola is
  - A. 1
  - B. 2
  - C.  $\sqrt{3}$
  - D.  $\sqrt{2}$
17. The center of the circle represented by  $x^2 + y^2 + 6x + 8 = 0$  is
  - A. On the x-axis
  - B. On the y-axis
  - C. In the first quadrant
  - D. At the origin
18. For what value of  $k$  does the circle  $x^2 + y^2 + 6x - 4y + k = 0$  have a radius of 5?
  - A. 11
  - B. -12
  - C. 10
  - D. 12
19. Two lines are said to be parallel if their slopes are
  - A. Equal
  - B. Unequal
  - C. Non-existent
  - D. Negative reciprocals of each other
20. The fastest method to solve the nonlinear equation numerically is:
  - A. Bisection Method
  - B. False Position Method
  - C. Newton Raphson Method
  - D. Simpson  $\frac{1}{3}$  Method

**Class: XII****MODEL PAPER EXAMINATION 2026**
**Time: 2 hours 40 minutes SUBJECT: MATHEMATICS SECTION "B" AND SECTION "C"**  
**SECTION "B" SHORT ANSWER QUESTIONS**
**Total Marks 80**  
**Marks 50**
**Q2:**
**Note:** Attempt any **TEN-PART** questions from this section. All questions carry equal marks.

(i) Evaluate any one of the following limits.

a)  $\lim_{x \rightarrow 0} \frac{\sqrt{x+3}-\sqrt{3}}{x}$       b)  $\lim_{x \rightarrow 0} \frac{3\sin x - x^3}{2x}$

(ii) Find the equation of the circle whose centre is at its origin and it contains a point (5,6).

(iii) Find the order and degree of  $\frac{d^3y}{dx^3} - 5 \left(\frac{d^2y}{dx^2}\right)^3 + 7\left(\frac{dy}{dx}\right)^8 = 0$ (iv) Obtain the first three terms of the Maclaurin's series for  $e^{\sin x}$ .(v) Find the values of  $m$  and  $n$ , so that the given function  $f$  is continuous at  $x = 3$ 

$$f(x) = \begin{cases} mx & \text{if } x < 3 \\ n & \text{if } x = 3 \\ -2x + 9 & \text{if } x > 3 \end{cases}$$

(vi) Evaluate  $\int \frac{5dx}{25x^2+9}$  by using trigonometric substitution.(vii) Differentiate  $\ln[\tanh(x^2 + 2x + 1)]$  with reference to  $x$ (viii) The line through (6, -4) and (-3, 2) is parallel to the line through (2, 1) and  $(y, 0)$ . Find  $y$ .(ix) A, B and C are three collinear points and the coordinates of A and B are (3,4) and (7,7) respectively. Find the coordinates of C if  $|\overline{AC}| = 10$  units.(x) The area of the triangle is given by formula  $A = \frac{1}{2}bh$ . Differentiate A with respect to their independent variables.(xi) Find the equation of the parabola whose vertex is (3,4) and directrix  $x = 5$ .(xii) Use Bisection method to find a real root of  $f(x) = \cos x$ , [1,2] up to one decimal place (five iterations)**OR**Show that the line  $y = 2x + 4$  is tangent to the ellipse  $4x^2 + 3y^2 = 12$ . Also find the point of contact.(xiii) Find eccentricity, foci, vertices and latus rectum of  $\frac{x^2}{9} - \frac{y^2}{16} = 1$ **SECTION "C" DETAILED ANSWER QUESTIONS****Marks 30**
**Note:** Attempt any **FIVE QUESTIONS** from this Section. **Question No.3** is compulsory. All questions carry equal marks.
Q.3 A. Integrate  $\int x^2 e^x dx$  by parts      B. Evaluate  $\int \frac{(x^2+2x+3)dx}{x^3-x}$  by using partial fractionQ.4 Find the area above the x-axis under the following curve  $y = 5e^{5x}$   
 $x = -2, \quad x = 3$ Q.5 Find the condition of tangency of line  $y = mx + c$  to ellipse

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

Q.6 Prove that the two circles  $x^2 + y^2 + 2gx + c = 0$  and  $x^2 + y^2 + 2fy + c = 0$  touch each other, if  $\frac{1}{f^2} + \frac{1}{g^2} = \frac{1}{c}$ Q.7 The gradient of one of the lines of  $ax^2 + hxy + by^2 = 0$  is twice that of the other. Show that  $8h^2 = 9ab$ 

Q.8 Solve the any ONE of the following differential equations:

A.  $\frac{dy}{dx} = \left(\frac{y}{x}\right) + \sin\left(\frac{y}{x}\right)$       B.  $(6x^2 + 2y^2)dx - (x^2 + 4xy)dy = 0$

Q.9 For what value of  $k$ , the line  $y=2kx$  will be tangent to  $2x^2 - 5y^2 = 10$ Q.10 Use Newton Raphson method to find the real root of  $f(x) = 3x - \sqrt{1 + \sin x}$ ,  $x_0 = 1$ **END OF PAPER**